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ARITHMETIC OF MODULAR FORMS

SoYoung Choi*

Abstract. We investigate congruence properties of Fourier coeffi-
cients of modular forms for Γ+

0 (2).

1. Introduction and statement of results

The congruence properties of modular forms were investigated by
many mathematicians. In particular, Choie, Kohnen and Ono [4]found
congruence properties of the coefficients of modular forms for SL2(Z).
Choi [1] generalized their result to modular forms for congruence sub-
groups. Let Γ+

0 (p) be the group generated by the Hecke group Γ0(p)

and the Fricke involution Wp =
(

0 −1/
√
p√

p 0

)
. Choi [2] found some con-

gruence properties of coefficients of modular forms for Γ+
0 (5). In this

paper, following the argument in [2, 4], we obtain congruence properties
of coefficients of modular forms for Γ+

0 (2). The main result of this paper
is the following theorem.

Theorem 1.1. Let k be a positive integer with k ≡ 0 (mod 8). Let
f be a modular form of weight k for Γ+

0 (2) having a Fourier expansion
of the form

f(z) =

∞∑
n=0

af (n)q
n, (q = e2πiz).

Suppose that f(z) has integral Fourier coefficients. Then for any integer
b with 2b ≥ k/8 + 1 we have

af (2
b) ≡ 0 (mod 2).
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2. Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. Let k > 2 be an
even integer. Let Ek be the normalized Eisenstein series of weight k for
SL2(Z) defined by

Ek(z) := 1− 2k

Bk

∑
n≥1

σk−1(n)q
n (q = e2πiz),

where σk−1(n) is the usual divisor sum of n and Bk is the k-th Bernoulli
number. Let

E+
k (z) :=

Ek(z) + 2k/2Ek(2z)

1 + 2k/2
.

Then E+
k is a modular form of weight k for Γ+

0 (2) (see [3]). For Dedekind

eta function η(z) = q1/(24)
∏∞

n=1(1− qn), let

∆+
2 (z) := η(z)8η(2z)8 = q − 8q2 +O(q3).

Then ∆+
2 which is a cusp form of weight 8 for Γ+

0 (2) has no zeros on the
complex upper half plane and has integral coefficients (see [3]). We now
consider a hauptmodul for Γ+

0 (2) defined by

j+2 (z) =
E+

4 (z)
2

∆+
2 (z)

=
1

q
+O(1).

Then j+2 has integral Fourier coefficients. Let r := k/8 + 1. We notice

−1

2πi

dj+2 (z)

dz
=

E+
10(z)

∆+
2 (z)

and the functions

jm
dj+2 (z)

dz
=

1

m+ 1

dj+2 (z)
m+1

dz

has zero constant term for each nonnegative integer m. Let b an integer
with 2b ≥ r. Since

(j+2 )
2b−r f

(∆+
2 )

r−1

is a polynomial in j+2 , by linearity we obtain that the constant term of

(j+2 )
2b−r f

(∆+
2 )

r−1

1

2πi

dj+2 (z)

dz

is zero. Thus we have that the constant term of

(j+2 )
2b−r −33f

(∆+
2 )

r−1

1

2πi

dj+2 (z)

dz
= (j+2 )

2b−r f

(∆+
2 )

r−1

33E+
10(z)

∆+
2 (z)
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is zero (mod 2). Since

(j+2 )
2b−r f

(∆+
2 )

r−1

33E+
10(z)

∆+
2 (z)

≡ (j+2 )
2b−r 33E

+
10(z)

∆+
2 (z)

r
f

≡ (E+
4 (z))

2b+1−2r33E+
10(z)

∆+
2 (2

bz)
f (mod 2)

and 33E+
10(z) ≡ 1 ≡ E+

4 (z) (mod 2), we have that the constant term of

(E+
4 (z))

2b+1−2r33E+
10(z)

∆+
2 (2

bz)
f

is congruent to the constant term of

f

∆+
2 (2

bz)
(mod 2).

From the fact that 1/∆+
2 (2

bz) = q−2b + 8 + O(q), we have that the
constant term of

f

∆+
2 (2

bz)

is af (2
b) + 8af (0) which gives

af (2
b) ≡ 0 (mod 2).

This completes the proof of Theorem 1.1.
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